Kwanyong Park

Website: pkyong95.github.io Email: pkyong7@etri.re.kr

RESEARCH INTERESTS

My research goal is to advance the field of computer vision and machine learning, with a focus on creating robust visual recognition/generation systems in a data-efficient manner. Specifically, I am interested in the following research topics, but also open to other explorable/challenging domains.

- Scalable and Efficient Learning; Multi-modal Learning, Data-efficient Learning
- Generative AI; Image/Video Generation, Multimodal Large Language Models
- Visual Recognition; Video Understanding and Processing

Research Experiences

Electronics and Telecommunications Research Institute (ETRI) Research Scientist (Military Service), Visual Intelligence Lab	Daejeon, Korea Sep.2023–Present
Adobe Research Research Intern (Remote), Deep Learning Group, Creative Intelligence Lab	San Jose, CA Apr.2021–Dec.2021
Korea Advanced Institute of Science and Technology (KAIST) Research Assistant, Robotics and Computer Vision Lab	Daejeon, Korea Mar.2018–Aug.2023

EDUCATION

Korea Advanced Institute of Science and Technology (KAIST)	Daejeon, Korea
Ph.D. in Electrical Engineering (Advisor: Prof. In So Kweon)	Sep.2019-Aug.2023
- Thesis: "Towards Universal Visual Scene Understanding in the Wild"	
Korea Advanced Institute of Science and Technology (KAIST)	Daejeon, Korea
M.S. in Electrical Engineering (Advisor: Prof. In So Kweon)	Mar.2018-Aug.2019

- Thesis: "Learning Unpaired Video-to-video Translation for Domain Adaptation"

Korea Advanced Institute of Science and Technology (KAIST)

B.S., Double Major in Mechanical Engineering and Electrical Engineering (Magna Cum Laude)

Mar.2013–Feb.2018

PUBLICATIONS

C: conference, J: journal, W: workshop, P: preprint / * equal contribution

- [C13/W2] Weak-to-Strong Compositional Learning from Generative Models for Language-based Object Detection
 Kwanyong Park, Kuniaki Saito, Donghyun Kim
 European Conference on Computer Vision (ECCV), 2024
 Short version at "Generative Models for Computer Vision" Workshop in conjunction with CVPR, 2024
 - [C12] MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark Sanghyun Woo*, Kwanyong Park*, Inkyu Shin*, Myungchul Kim*, In So Kweon IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024

- [W1] KOALA: Empirical Lessons Toward Memory-Efficient and Fast Diffusion Models for Text-to-Image Synthesis Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, Sung Ju Hwang Media coverage: covered by YTN, Yonhap News, AI Times, and many local media. Under-review, 2024
 - Short version at "Generative Models for Computer Vision" Workshop in conjunction with CVPR, 2024
- [J2] Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management Junha Song, **Kwanyong Park**, Inkyu Shin, Sanghyun Woo, Chaoning Zhang, and In So Kweon IEEE Robotics and Automation Letters (**RA-L** and **ICRA**), 2024
- [J1] Joint Self-supervised Learning and Adversarial Adaptation for Monocular Depth Depth Estimation from Thermal Image Ukcheol Shin, Kwanyong Park, Byeong-Uk Lee, Kyunghyun Lee, In So Kweon Machine Vision and Applications (MVA), 2023
- [C11] Mask-guided Matting in the Wild Kwanyong Park, Sanghyun Woo, Seoung Wug Oh, In So Kweon, Joon-Young Lee IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
- [C10] Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation Daehan Kim*, Minseok Seo*, Kwanyong Park, Inkyu Shin, Sanghyun Woo, In So Kweon, Dong-Geol Choi AAAI Conference on Artificial Intelligence (AAAI), 2023
- [C9] Self-supervised Monocular Depth Estimation from Thermal Images via Adversarial Multi-spectral Adaptation Ukcheol Shin, Kwanyong Park, Byeong-Uk Lee, Kyunghyun Lee, In So Kweon Received Best Student Paper Award in WACV 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (Oral), 2023
- [C8] Learning Classifiers of Prototypes and Reciprocal Points for Universal Domain Adaptation Sungsu Hur, Inkyu Shin, Kwanyong Park, Sanghyun Woo, In So Kweon IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023
- [C7] Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection Sanghyun Woo, Kwanyong Park, Seoung Wug Oh, In So Kweon, Joon-Young Lee European Conference on Computer Vision (ECCV), 2022
- [C6] Tracking by Associating Clips Sanghyun Woo, Kwanyong Park, Seoung Wug Oh, In So Kweon, Joon-Young Lee European Conference on Computer Vision (ECCV), 2022
- [C5] Per-Clip Video Object Segmentation Kwanyong Park, Sanghyun Woo, Seoung Wug Oh, In So Kweon, Joon-Young Lee IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022
- [P1] Unsupervised Domain Adaptation for Video Semantic Segmentation Kwanyong Park*, Inkyu Shin*, Sanghyun Woo, In So Kweon arXiv, 2021
- [C4] LabOR: Labeling Only if Required for Domain Adaptive Semantic Segmentation Inkyu Shin, Dong-Jin Kim, Jae Won Cho, Sanghyun Woo, Kwanyong Park, In So Kweon Received Qualcomm Innovation Award 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (Oral), 2021
- [C3] Discover, Hallucinate, and Adapt: Open Compound Domain Adaptation for Semantic Segmentation Kwanyong Park, Sanghyun Woo, Inkyu Shin, In So Kweon Received Qualcomm Innovation Award 2021 Neural Information Processing Systems (NeurIPS), 2020
- [C2] Align-and-Attend Network for Globally and Locally Coherent Video Inpainting Sanghyun Woo, Dahun Kim, Kwanyong Park, Joon-Young Lee, In So Kweon British Machine Vision Conference (BMVC), 2020

[C1] Preserving Semantic and Temporal Consistency for Unpaired Video-to-Video Translation Kwanyong Park, Sanghyun Woo, Dahun Kim, Donghyeon Cho and In So Kweon ACM Multimedia (MM), 2019

PATENTS

- Systems and methods for object tracking (US Patent App. 17/657,430)
- Per-clip video object segmentation using machine learning (US Patent App. 17/853,671)

AWARDS & HONORS

• WACV Best Student Paper Awards Jan.2023

• Student Representative of RCV Lab (over 30 members)

Jun.2022—Aug.2023

• Qualcomm Innovation Fellowship Nov.2021

• KAIST Scholarship Sep.2019–Aug.2023

• SIGMM Student Travel Grants Nov.2019

• Korea Government Scholarship

Mar.2018—Aug.2019

• Best M.S students, Eun Chong-Kwan Scholarship Mar.2018

Research Projects

• Development of AI Autonomy and Knowledge Enhancement for AI Agent Collaboration (2023-)

- Consortium: ETRI, University of Wisconsin-Madison, KAIST, Yonsei University, Korea University
- Project Goal: Develop multi-agent-based compound intelligence enhancement for self-evolving AI.
- Related Publication: [C13/W2]
- Development of Large Korean Language Model Technology for Efficient Pre-training (2023-)
 - Consortium: ETRI, University of Wisconsin-Madison, KAIST, GIST, Woongjin
 - Project Goal: Develop efficient multi-modal AI models for Korean.
 - Related Publication: [W1], [W2]
- Development of Intelligent COVID-19 Probe Circulation and Data Listing Technology (2020-2023)
 - Consortium: KAIST, KIST, Seoul National University Bundang Hospital, Miru Systems
 - Project Goal: Develop AI-driven surveillance systems designed to monitor, detect, and manage COVID-19.
 - Related Publication: [C5], [C6], [C12]
- Data Dam Project: Large-Scale AI Dataset Construction for Multi-Sensor Tracking (2021)
 - Consortium: KAIST, Testworks, Miru Systems
 - Project Goal: Construct a large-scale dataset for AI-driven multi-sensor tracking.
 - Related Publication: [C12]
- Development of AI Algorithms for Cross-Domain Data Utilization (2020-2023)
 - Consortium: KAIST, Samsung Electronics
 - Project Goal: Develop data-efficient learning algorithms using data from different domains.
 - Related Publication: [C3], [C4], [P1], [C7], [C11]
- Development of Efficient Deep Learning Meta-architecture for Video Application (2018-2020)
 - Consortium: KAIST, Samsung Electronics
 - Project Goal: Develop efficient and scalable architecture for video recognition, synthesis, and editing.
 - Related Publication: [C1], [C2]

ACADEMIC SERVICE

- Journal Reviewer
 - TPAMI (2022-), TMM (2023-)
- Conference Reviewer
 - CVPR (2022-), ICCV (2023-), ECCV (2022-), NeurIPS (2024-), AAAI (2023-), BMVC (2020-)

TEACHING

Teaching Assistant at KAIST EE

- EE405 Electronics Design Lab.<Network of Smart Things> (Spring, 2019)
- EE209 Programming Structure for Electrical Engineering (Fall, 2018)
- EE305 Introduction to Electronics Design Lab. (Fall, 2018)

MENTORING

- Junha Song (MS @ KAIST). Co-advised a project, paper accepted at RAL-ICRA'24
- Daehan Kim & Minseok Seo (MS @ Hanbat National University). Co-advised a project, paper accepted at AAAI'23
- Sungsu Hur (MS @ KAIST). Co-advised a project, paper accepted at WACV'23

REFERENCES

Prof. In So Kweon (M.S. - Ph.D. advisor at KAIST)

KEPCO Chair Professor, School of Electrical Engineering, KAIST

Email: iskweon77@kaist.ac.kr

Dr. Joon-Young Lee (Internship mentor)

Senior Research Scientist, Adobe Research

Email: jolee@adobe.com

Dr. Seoung Wug Oh (Internship mentor)

Research Scientist, Adobe Research

Email: seoh@adobe.com